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Dynamical recovery
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Robert Cahn demonstrated, many years ago, that purely thermal recovery at high
temperatures occurs by polygonisation, the first seen example of cell formation in a
dislocated crystal. Here, we now consider low temperature recovery which, because of the
essential role played in it by an applied stress large enough to cause plastic yielding, is
known as dynamical recovery or work softening. The dominant features, which can lead to
this recovery appearing in the spectacular form of a yield drop, are the creation of cellular
dislocation structures in the work hardened state, with most of the glide dislocations
densely packed in the cell walls where they face a forest of other dislocations as obstacles;
the back stress exerted by the obstructed dislocations on the interiors of the cells so that,
even though these are soft, they are prevented from yielding until the applied stress is
raised further; and the stress-driven but thermally activated cutting of the glide dislocations
through the forest obstacles. The way these combine to give yield drops is discussed.
C© 2004 Kluwer Academic Publishers

1. Introduction
It is a pleasure to write this tribute to Robert Cahn.
He has contributed—and continues to contribute—so
much to the development of materials science. My piece
here stems from his first research, published in 1948 [1],
his classic study of polygonisation which proved for the
first time the existence of dislocations, in crystals plasti-
cally deformed by bending. This work also showed two
more effects which later proved most significant for un-
derstanding work hardening and related thermal soften-
ing. First, that a plastically bent metal crystal requires
strong annealing in order to polygonise. Thus, thermal
energy is needed to mobilise edge dislocations in those
movements that lead them to assemble in the ‘vertical’
walls between the polygonalised sub-crystals. Second,
the mechanical state of a plastically distorted crystal
depends not only on the density of dislocations but also
on how they are arranged, e.g. whether uniformly dis-
tributed as in a smoothly bent crystal or grouped to-
gether in the walls of a polygonalised one. Kuhlmann-
Wilsdorf [2] has subsequently generalised this into the
‘LEDS’ principle, i.e., that dislocations in a highly dis-
located crystal will adjust their positions so as to screen
out their long-range and energy-costly elastic fields.

The walls observed by Cahn in symmetrically bent
single crystals were the simplest examples of LEDS
wall structures. Much more complicated ones are found
in crystals stretched in tension well into stages II and
III of the tensile stress-strain curve, i.e., into the range
where, in cubic crystals such as copper and aluminium,
there is multiple glide on intersecting slip systems and
work hardening is pronounced. Electron microscopy re-
vealed the cell structures of these work-hardened states.
The interiors of the cells have remarkably few dislo-
cations. Practically all of the latter are concentrated
densely in thick walls round these cells. The ‘end’ walls,

roughly perpendicular to the Burgers vector of the pri-
mary slip system, most nearly correspond to Cahn’s
polygon walls, but with the major difference that they
now consist of dipoles and multipoles of dislocations.
On the near side of such a wall the edge dislocations
from the primary system are all of the same sign, repre-
senting slip which started in the adjoining cell and be-
came held up at the wall. On the far side of this wall is a
similar set of primary edge dislocations but of opposite
sign, these having come from the cell on this far side.
The advantage of this, from the LEDS point of view, is
that the opposite stress fields of these dipoles mutually
cancel at large distances, compared with their spacing,
so economising in elastic strain energy. These two sets
of dislocations cannot readily come together however,
despite their attractions, because they are entangled in a
dense wall forest of other dislocations from secondary
slip systems activated at this stage in the work harden-
ing sequence. These entanglements obstruct the glide
motions of the wall dislocations and so prevent the sides
of the wall from collapsing in, towards each other. The
cell ‘sides’ are also bounded by dislocation walls, of a
more screw character, held together largely by sessile
dislocation products of interactions of both primary and
secondary systems.

A second difference is that, whereas Cahn’s walls re-
quired high temperatures for their formation–obviously
to provide the mobile vacancies necessary for the climb
processes involved—the above cell walls in fact form
readily even at low temperatures, e.g., in aluminium.
Evidently, as emphasised by Brown [3], the work-
hardened state allows glide dislocations to form in small
numbers on many slip planes. But of course, at low tem-
peratures, the dipole end walls are very irregularly con-
structed. Although the vacancy processes of climb are
not needed in this case, thermal activation nevertheless
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plays an important role in their construction, discussed
below. If the formation of polygon walls is regarded
as a process of ‘recovery’ then these cell walls are to
be correspondingly regarded as formed by a process
of ‘dynamical recovery,’ the dynamism being provided
by the gliding dislocations, driven by the applied stress
aided by thermal energy [4].

2. Forest hardening
Two different kinds of dislocation interaction have been
considered for work hardening, a long-range one due
to the far-reaching stress fields of dislocations, and
a short-range ‘forest’ one exerted when the cores of
intersecting dislocation lines meet and attempt to cut
through one another. Measurements of the flow stress
of a given work-hardened dislocation structure have re-
vealed a temperature dependence of this, such that in,
e.g., aluminium, this stress falls almost one-third from
0 to 100 K, but more gently thereafter, as in Fig. 1 [5].

The observed constancy of the ratio between the
temperature-dependent and the total flow stresses sug-
gests that the same type of obstacle is responsible for all
the hardening and this is borne out by the observation
that latent-hardening experiments, in which the orien-
tation of the predominant slip system is changed so that
the dislocations of the initial system are then made to
act as forest obstacles to those of the second system,
give the same thermal/total ratio. This led Basinski and
Basinski [6] to conclude that only one kind of obstacle,
that provided by forest dislocations is responsible for
all the hardening.

At zero temperature the entire task of driving a glide
dislocation through the forest has to be carried by the
applied stress, at the limit value σ0 for the given state of
work hardening; and this is determined by the balance
of forces at an obstacle. A length l(� b), where b is the
Burgers vector length, is pushed against the obstacle by
a force σ0bl. This is opposed by the force exerted by

Figure 1 Temperature dependence of the flow stress of an aluminium crystal in a given work hardened state, corrected for the temperature dependence
of the elastic shear modulus and extrapolated to zero temperature [5].

the obstacle which, for a localised obstacle such as the
core of a forest dislocation, is usually taken to be about
1/2µb2, where µ is the shear modulus. Hence

σ0
∼= µb

2l
. (1)

The length l, which thus determines the amount of
work hardening, is taken to be the distance between
dislocations, related to the dislocation density (strictly,
the forest density) ρ by ρ ∼= l−2, which leads to a
familiar result,

σ0
∼= αµbρ1/2 (2)

which fits observations well, with α ∼= 0.3. This is not
a proof of the forest theory, however, because for di-
mensional reasons almost any theory of work hardening
must lead to an expression of the same form.

Nevertheless, Equation 2 gives an oversimplified ac-
count of the hardening, as can be seen from the fact that
it depends on a single variable, the dislocation density,
and so takes no account of any heterogeneity of disloca-
tion distribution, the importance of which was demon-
strated by Cahn in his polygonisation observations. The
very form of Equation 2, i.e., the dependence on ρ1/2,
shows its inadequacy, as given by an argument due to
Mughrabi [7] and Nabarro [8]. When a given number of
obstacle dislocations is distributed homogeneously to a
density ρ, then Equation 2 is applicable. But if this same
set of dislocations rearranges itself into a heterogeneous
structure, the hardening changes. Mughrabi modelled
the cell structure as a composite material, soft material
in the cells with a local flow stress σC, hard material
in the cell walls with a flow stress σW, and assumed
that each of these regions obeyed Equation 2 with local
values of dislocation density, ρC and ρW, respectively.
If the fractional areas of the regions, on a macroscopic
slip plane spanning the entire cross-section, are AC and
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AW, respectively, with AC + AW = 1, the overall flow
stress σ is then

σ = ACσC + AWσW = αµb
(

ACρ
1/2
C + AWρ

1/2
W

)
, (3)

which is smaller than when all the dislocations are dis-
tributed homogeneously over the entire macroscopic
slip plane. For example, in the extreme case where ρC
= 0, so that ρW = ρ/AW , the flow stress is

σ = αµbA1/2
W ρ1/2 < αµbρ1/2. (4)

It follows that the conversion of a homogeneous set
of dislocations to a heterogeneous set, with the total
number unchanged, softens the material. The physical
basis of Equation 3 can be seen by imagining a ‘test’
dislocation line which sweeps, rigidly, across the entire
macroscopic slip plane, and evaluating the work done in
passing it through all obstacles, in both cells and walls.
Although σ > σC and σ < σW there is nevertheless
a state of marginal mechanical stability everywhere,
with the local driving stress equal to the local oppos-
ing stress. This is achieved by the formation of a set
of internal stresses, backward acting ones within the
cells, opposing σ , and forward acting ones in the walls,
aiding σ .

These internal stresses can be deduced from the dis-
tribution of the primary glide dislocations, held up at
the near and far sides of the walls, or more simply as the
consequence of plastic relaxation in the cells but not in
the walls. There is thus a role for long-range stresses in
the theory, but of course the work hardening is actually
due to the obstacle dislocations in the walls, for with-
out these the entire dislocation structure, including its
long-range stress fields, would collapse.

3. Thermal activation
As Fig. 1 shows, thermal energy at a temperature T can
enable flow to occur at an applied stress σa < σ0. It is
generally accepted that the activation energy required
in this case should not be greater than about 25 kT
(k = Boltzmann’s constant); otherwise, even though
a short segment of a glide dislocation vibrates against
an obstacle with high frequency (≈1011s−1) the suc-
cessful attempts to overcome it would be too rare for
a significant contribution to the flow. Of course, again
as Fig. 1 shows, at low temperatures the applied stress
continues to make a major contribution to the energy re-
quired to pass the obstacle. The thermal energy required
to make up the shortfall, i.e. the activation energy, is thus
dependent upon the applied stress, varying from zero,
when σa = σ0, to a maximum which represents the en-
tire energy barrier of the obstacle, when σa = 0. Fig. 1
shows that the obstacles in work hardened aluminium
are small, since, for example, at T = 100 K, where
25 kT is only about 0.25 eV, the flow stress has already
fallen to a mere 70% of its zero-point value, so that
the thermal energy here is already meeting a sizeable
fraction of total energy demand, which is thus small.

This smallness is consistent with forest hardening,
governed by core-core intersections only a few atoms

wide and with an intersection energy of about 1
2µb3 ∼=

2.5 eV for aluminium and copper. There are other
low-energy dislocation processes such as jog migra-
tion along screw dislocations and cross-slip of jogged
screws. However, these generally are processes of dis-
location structural change, whereas Fig. 1, from the way
its underlying measurements were made, refers to the
temperature-dependence of a given unchanged disloca-
tion structure, for example due to a fixed set of forest
obstacles which become more difficult to cross, so re-
quiring a larger applied stress, as the temperature is
lowered. Another low-temperature process of this type
is the double kink formation which enables a screw dis-
location to move from one lattice row to the next, but
this is important only in BCC metals, not the FCC ones
being considered here, where screw dislocations can
spread out along the slip plane.

Nabarro’s expression for the activation energy �G
for a segment of a glide dislocation to cut through a
forest obstacle [9], applicable when the applied stress
σa is near its zero-temperature limit σ0, can be written as

�G = b f
(�σ

σ0

)3/2
, (5)

where f is the maximum force with which the obstacle
can resist the dislocation, with b f ∼= 2.5 eV, and

�σ = σ0 − σa (6)

is the gap between the obstacle stress, i.e., σ0, and the
applied stress at a temperature T . Strictly, the stresses
here should refer to those within the walls, which are
enhanced by the internal stress factor, but since this
equally affects the local driving stress and its zero point
limit and only the ratio is here required, this can be set
at �σ/σ0.

All the above refers to average stresses, but, even
if all the obstacles are identical, as for example for-
est dislocations all of the same crystallographic family,
the obstacle forces generally vary due to differences
in the spacing and location of these dislocations in the
wall. Because of this the various obstacles confront a
glide dislocation with a spectrum of activation ener-
gies which, in the case of a freshly and instantaneously
loaded material, can extend down to zero energy. It is
usual to assume a level distribution but this is not a
critical feature. For simplicity, suppose that the load is
applied instantly to a fixed stress σ a, large enough to
bring the low energy end of the spectrum to zero. Then,
as time t elapses, those obstacles with low energies are
first overcome, so that this end of the spectrum is ‘con-
sumed’ or ‘exhausted,’ whereas the high energy end
remains untouched. The theory [10] shows that the ex-
hausted and intact regions are separated by a steep edge,
almost a step function, and that the ‘cut-off’ activation
energy at this edge is given by

�G = kT ln(νt), (7)

where ν is the frequency of vibration of the dislocation
against an obstacle and νt � 1. Taking ν = 1011s−1,
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Figure 2 Stress-strain curves of an aluminium crystal, taken after pre-
liminary straining to 0.23 at 90 K. (a) strained at 90 K. (b) Strained at
300 K [5].

this gives for example �G = 25 kT when t = 1 s. Cor-
responding to this increasing activation energy there
develops an associated gap as in Equation 6, between
the applied stress and the stress needed to reduce this
energy to zero. A value for this gap is given by substi-
tuting for �G from Equation 5.

We obtain

(
�σ

σ0

)3/2

= kT

b f
ln(νt), (8)

where �σ = σf − σa, with σf as the stress correspond-
ing to the activation energy cut-off and all these stresses
refer to conditions in the wall where their local values
are enhanced by the internal stress.

Experiments as in Fig. 2 are usually done at constant
strain rate (ε̇ = 2.5×10−5s−1 in Fig. 1) and the applied
stress is left free to find its own level. To extend the
equations to this situation we first consider the rate σ̇f at
which the cut-off stress front advances along the stress
axis, under the conditions of Equation 7. We obtain

σ̇f ≡ d�σ

dt
= 2

3

kT

�G

�σ

t
, (9)

Extending this to the constant ε̇ conditions, which give
a rising external applied stress σ̇a and thus a locally
enhanced value βσ̇a in the wall, where β is the en-
hancement factor, we deduce that

βσ̇a = σ̇f, (10)

i.e., the cut-off front advances at the same rate as the
local applied stress, since, if it were to advance more
slowly the gap would then shrink and the ensuing de-
crease in the activation energy would cause the cut-off
stress front to speed up; and vice versa if σf were ad-
vancing faster than βσa.

The justification for extending Equation 7 to the
case where this stress is rising rests on the largeness
of ν(≈1011s−1). As a result, the low energy obstacles

are exhausted so rapidly that the activation gap �σ in-
creases to a substantial value in a time so short that the
rise in applied stress is minute, so that the low end of
the gap, at βσa, can be taken as approximately fixed
during this time, as required in Equation 7. For exam-
ple, t = 10−6s gives �σ ≈ 0.2 σ0 at 300 K and thus,
for a typical work hardened level, �σ ≈ 2 × 10−4µ.
In this time the applied stress, enhanced in the wall by
the factor β, rises by

βσ̇at = βγµε̇t, (11)

with γµ ≈ 0.003µ for a typical work hardening slope,
β ≈ 5, and the above value of ε̇, giving βσ̇at ∼=
4 × 10−13 µ, i.e., a shift in the low stress end of
the gap of only 2 ×10−9 of the width of the gap. The
value of β is deduced from Brown [3] who gives the
volume fraction of the obstacle regions as 0.2 of the
whole; and from Mughrabi and Ungar [11] who give
ρ = 1015 m−2 in the walls, so that l ≈ 100 b and hence,
from Equation 1, σf ≈ 0.005µ ≈ 5σa.

It will be convenient to re-express the above results by
introducing the notion of a ‘gap time’. This is the time
t that would have been required in a constant applied
stress experiment to grow the stress gap to the value�σ ,
according to Equation 8. Using the above numerical
values it is about 17 s for straining in the plastic range
at ε̇ = 2.5 × 10−5 s−1; and correspondingly shorter for
higher σ̇a rates, approaching a limit of about 0.06 s for
purely elastic straining.

4. Dynamical recovery
The other effect of temperature, not so far considered, is
to change the dislocation structure, as Cahn observed
in his polygonisation experiments. The most familiar
effect of this is the transition from stage II of the stress-
strain curve, where the work hardening rate is linear,
about γ ≈ 0.003, to stage III where the rate progres-
sively falls away from this value in a roughly parabolic
form. The stress at which this transition begins de-
creases with increasing temperature.

The more spectacular effects of dynamical recovery
are however to be seen in experiments in which, at some
point in stage III of the stress-strain curve, the tem-
perature or, less strikingly, the strain rate, is suddenly
altered by a large amount, e.g. by 100 K. Changes to
a lower T or a higher ε̇ do not however produce the
effects because they make the unchanged dislocation
structure more resistant to forest cutting, so that what
started out as a marginally stable structure becomes a
fully stable one at the same applied stress. The previous
structure continues unchanged into the new conditions.
The only effect then observed is that, shown for example
in Fig. 1, which measures the resistance of a constant
forest structure as a function of temperature.

The interesting changes are those in which T is raised
or ε̇ is lowered, for they take the system from an initially
marginally stable state into a fully unstable one. The
practical effect is to produce a strong yield stress drop
at the start of plastic yielding at the raised temperature,
as in Fig. 2. It should perhaps be noted that a small yield
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drop can be produced even with unchanged T or applied
ε̇. This is because the energy or stress gap is not sensitive
to ε̇ directly but to σ̇ . Suppose that, having reached
some flow stress by work hardening at constant T and
ε̇, the load is taken off and then returned again. The flow
stress is now initially slightly higher, because, whereas
σ was originally rising slowly since the applied ε̇ was
taking the system along a gently rising plastic stress-
strain curve, it now rises rapidly as the system moves
up the steep elastic line to the flow stress. There is now
less time for thermal activations and so the gap has to
be decreased, to compensate for this, and this is done by
lifting its lower end, i.e., the flow stress, towards the cut-
off end. The effect is a small one, not easily detected,
and is not an example of dynamical recovery because it
requires no change of dislocation structure. Note that,
because this upper yield point, although small, is above
the previous flow stress, the regions inside the cells,
which were previously in a state of marginal stability,
are taken beyond this into an unstable state. It follows
that, on reloading at the same temperature and applied
strain rate, plastic flow resumes first inside the cells,
not the walls.

The yield drop of Fig. 2 shows dynamical recov-
ery due to a dislocation rearrangement to a softer state
(work softening). But why the discontinuity of a yield
drop, rather than a smooth curve from the old to the
new structure?

Using Fig. 2 as an example, this aluminium crystal
was first strain hardened at T1 (90 K) to the flow stress
σa = 18 MPa. The state of marginal stability inside the
cells at this point was given by

σa − σi = σs, (12)

where σs is the stress to operate the dislocation sources
in the cells and σi is the Mughrabi back stress from the
dislocations held up at the walls. The crystal was then
unloaded at T1, then heated to T2 (300 K) and reloaded
at this higher temperature.

Until the value of σi became changed, at this tem-
perature, the state of marginal stability within the cells
continued to be given by Equation 12. In other words,
the applied stress at T2 would have had to be raised to
the same value σa (but scaled down to the shear mod-
ulus at this temperature ) as at T1 to reactivate them.
With µ(300) ≈ 0.9µ(90) this gives σa = 16.5 MPa
at T2, above the observed upper yield stress, 14.6, and
well above the lower yield stress, 13.5.

The difference, 16.5 → 13.5 MPa, indicates a re-
duction in σi due to dislocation rearrangements, with
some annihilation, in the walls. At the point σa at T1
the walls were in a state of marginal stability under the
local driving stress βσa.

The cut-off stress at the upper end of the gap was
higher still, at βσa + �σ . From the above values of
strain rate, work hardening slope, β, t = 17 s (as at the
end of Section 3) and thus �G = 28 kT, we deduce
from Equations 5 and 8 that the activation front at 90 K
was σf(90) = (5×18) + �σ (90), with �σ = 0.2 σ0, so
that σ0 −�σ = 5 × 18 = 90 MPa and hence σ0 = 112
and �σ (90) ≈ 22. Thus σf(90) = 112 MPa.

At 300 K this same σf becomes σf(300) = 103 MPa.
The values here, T2 = 300 K and t = 0.06 s (since the
pre-yield straining is elastic) now give �σ = 0.37 σ0 =
38 and so σa(300) = (103 − 38)/5 = 13 MPa. This is
the applied stress at which forest cutting is expected
to begin in the walls at this temperature. The cutting
enables the dislocations, of opposite signs, on oppo-
site sides of a wall, to move closer together and so re-
duce the back stress which, at this stage, is suppressing
yielding in the cells. This reduction eventually brings
the stresses in the cells to the point of marginal stabil-
ity, Equation 12, so that general yielding then begins
throughout the entire system. However, this process is
initially slow and rather ineffective. Slow, because the
obstructed dislocations at the walls have to cut through
many forest obstacles before they can move appreciably
together. Ineffective, because such movement merely
reduces the range of already short-range dipole and
multipole back stresses so that their effect on σi inside
the cells is small.

Although forest cutting begins at an applied stress of
about 13 MPa this σa is so much below the value, 16.5,
required in Equation 12 to bring the cells to the unstable
state, that the crystal remains almost entirely elastic at
this stage, so that σ̇a continues its rapid climb, at almost
µε̇. This rise of σa is the only way that the cells can be
led to satisfy Equation 12, as yet, because the fall in σi
which is being brought about by the start of forest cut-
ting, is initially slow and small [12]. Hence the applied
stress climbs well above 13 MPa and gets closer to 16.5
before the change becomes substantial. But once σ̇a be-
gins to slow down, the system then collapses rapidly
into a softer state, for two reasons. First, because there
is now more time available so that, from Equation 7, a
larger gap can be tolerated, which allows a drop in the
applied stress. Second, the new dislocation rings emit-
ted by the cells, now that Equation 12 is satisfied, exert
additional pressure on the walls for more intense forest
cutting. This collapse gives the yield drop.

5. Conclusion
Dynamical recovery (work softening) at temperatures
well below those of Cahn’s thermal recovery by poly-
gonisation is due to the penetration of forest obstacles,
in cell walls, by thermally activated dislocation glide.
As a result, a wall structure that is stable at a low tem-
perature gives way to lower applied stresses at a higher
temperature. The softening gives a discontinuous yield
drop because the interiors of the cells remain elastic,
due to back stress from the wall dislocations, until the
applied stress is raised above that at which the low-
temperature wall structure first becomes unstable. The
onset of plasticity within the cells then triggers general
instability and softening, until a new state characteristic
of, and stable at, the higher temperature is reached.
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